
Open Source Software in Libraries

Open Source Software in
Libraries

JOY PERRIN AND CHRISTOPHER
STARCHER

Open Source Software in Libraries by Joy Perrin is licensed under a Creative
Commons Attribution 4.0 International License, except where otherwise noted.

Contents

Preface
Joy Perrin

1

RAIDER Publishing 3

1. Introduction 5

2. Software 21

3. Contributing to Open-Source Projects 58

Appendix 67

JOY PERRIN

The purpose of this book is to provide a short and quick
introduction to open source software for students of library
science. While the book is focused on open-source software in
libraries, readers will get an overview of different kinds of
technology and their purpose in a library and learn about the open-
source equivalents.

Librarianship and the open-source movement share goals of
making information open and accessible. This book should help
students and practitioners get a better sense of what open source
software is, and how it can be used in a library effectively. They will
also learn how open-source software is probably already being used
in their library by getting a review of the open-source software that
is used in common technology.

The authors hope that this book will help increase the knowledge
of the open-source movement among librarians and increase the
quality of discussion about the movement’s place in library missions
and goals.

Joy M. Perrin is a Digital Initiatives Librarian at Texas Tech
University with over 19 years of library experience at many different
levels within the organization. She has held technical service
positions, IT positions, and digitization positions. Throughout her
career, she has utilized open-source software to meet the needs of
patrons and to get her work done faster.

Christopher Starcher is a Digital Systems Librarian at Texas Tech
University. He started his career as a music cataloger, moved to
become a digital services librarian, and taught himself software
development and library system management. Christopher has
contributed to open-source software development projects and
implemented open-source software to meet patron needs.

Within each chapter, there are stated learning objectives, focus
questions for students to consider as they read, and at the end
of every section is a reflection exercise to help students use what

Preface | 1

they have learned. Chapters end with Review questions, chapter
summary, links to external resources, and a self-assessment for
students to measure their own understanding of the material.

Chapter 1 is an introduction to the concept of open-source
software and technology in libraries and how they interact.

Chapter 2 is an overview of the different types of open source
software and how each could be implemented in a library.

Chapter 3 is a review of the various ways that librarians can
engage with the open-source community at all levels of experience.

2 | Preface

RAIDER Publishing

This book is an open-access publication under RAIDER Publishing, a
publishing program started by the Texas Tech Library.

This book has not been peer-reviewed or edited.
If you would like to help make this text better and support the

publishing initiative at the library, please consider giving to the TTU
Library and requesting the money be spent on RAIDER Publishing.

Peer review costs: $500 ($250 per peer-reviewer) + Copy Editing
and clean up: $1,500 = Total Cost for book $2,000, which is much
lower than industry standard.

Every little bit helps.

RAIDER Publishing | 3

1. Introduction

Learning Objectives

• To understand the role of technology in libraries
• To understand the background and history of Open

Source Technology
• To understand the unique role of Open Source

Technology in libraries

Introduction

Technology touches almost every part of a patron’s experience of a
library. The simple act of finding resources is just the surface level
activity above a vast network of technology both library-specific
and general. Understanding how the various technologies converge
to the library and its services and how those technologies and
services are affected by Open Source Software will greatly help
librarians troubleshoot problems, plan for the future, and serve
their patrons.

Introduction | 5

Focus Questions

1. As you read the following chapter, think about
what technology you have taken for granted.

2. In what ways does the Open Source movement
and library science goals match? In what ways do
they resemble each other?

3. How successful has open-source software been
for libraries? In what ways does it succeed and in
what ways does it still need to develop?

Section 1: Technology in Libraries

Section Summary

This section talks about the history of technology in libraries and
how that history informs the current state of libraries in general.

Library Technology History

Libraries, from their earliest inceptions, have always used the
technology available to get information to their patrons. Sometimes
that technology took the form of processes and organizations, but
starting in the 1960s, the concept of computers as a part of library

6 | Introduction

technology emerged 1. In 1965, the Library of Congress released a
report that “concluded that automation in bibliographic processing,
catalog searching, and document retrieval was technically and
economically feasible”2. What was needed still were systems
designed for libraries, and for libraries to have their data in formats
easily machine-readable. From this need emerged the Machine
Readable Cataloging (or MARC) standard. The format was designed
to not only be read by a computer but also shareable so that many
libraries could get the benefit of one library’s cataloging work. The
creation of a sharable standard meant that a central repository
of cataloging could be maintained, and that made the Online
Computer Library Center (OCLC), a non-profit organization whose
mission is to make the technological cost of libraries lower,
possible. As technology advanced, libraries were able to connect
their resources using a network, and in 1971 the Alden Library at
Ohio University became the first to do online cataloging 3.

This is a theme that will reoccur. Technology not only lets new
and interesting things happen but in the case of software and data,
it allows cooperation. It allows many organizations to benefit from
the work of a few.

This caused librarians to realize the potential of digitization,
which is the act of converting a physical item into an electronic
or digital item. In the 1980s, the library of congress started their

1. https://www.ifla.org/files/assets/information-
technology/publications/40-years-of-its.pdf

2. https://web.archive.org/web/20140305103046/
https://blogs.loc.gov/loc/2014/01/a-half-century-of-
library-computing/

3. https://web.archive.org/web/20121004135231/
http://www.oclc.org/us/en/about/history/
beginning.htm

Introduction | 7

American Memory pilot project, with the goal of making “5 million
items accessible electronically to the nation by the year 2000” 4.
If cataloging could be made more efficient with technology and
shared resources, so could books and other items. Also around this
time libraries developed the Online Public Access Catalog (OPAC),
which allowed patrons to search the catalog easier and faster using
text-based searching.

In the ’90s, the idea of a library website as a portal to the library’s
services and resources was starting to take form. CD-ROMS were
being sold with electronic resources, and those developed into the
databases that libraries subscribe to today.

The 2000s have been marked by rapid growth in internet
technologies, computer languages, and other tools that have helped
libraries change rapidly. Caught in the middle of this change are
library staff who have to balance traditional tasks and goals with a
rapidly changing information environment.

Most modern libraries have a strong foundation of library
technology. Most of the technologies that the library science world
focused on for the past 60 years are now so commonplace as to
be nearly invisible to patrons. Computers are expected. On those
computers, patrons expect the internet. They expect to be able
to search and find resources from around the world easily. This
seamless experience for the patron comes at a technological cost
for the library. Efforts must be made to break down barriers and
create seamless experiences. Library employees are hired to work
with vendors or to maintain servers and software, prevent
downtime, and upgrade as new and better technologies are
developed. The traditional focus of the librarian as an organizer
of information has shifted to include organizer and maintainer of

4. https://web.archive.org/web/20140305103046/
https://blogs.loc.gov/loc/2014/01/a-half-century-of-
library-computing/

8 | Introduction

information systems. Many new job postings require applicants to
stay abreast of future trends, and many are looking for librarians
who can be relied on to do the work those future trends require.

The challenge to new librarians is quickly developing the
technology competencies that they will need in their future jobs to
be flexible 5.

In addition to that, Librarians are at the forefront of spreading
digital fluency, fighting for user-centric design, fighting for patron
privacy in a world of large companies that sell user’s data. Librarians
are at the crossroads where technology and evolving information
landscapes converge. It is vital that librarians, in whatever capacity
they can, to be well versed in how the technology works and
interacts with both patrons and library and information policy.
Practice and experimentation are two great ways to become familiar
with these concepts. The Open Source Movement provides a
backdrop on which librarian practice and experimentation can
happen.

Reflection Exercise

Think back on the last time you visited a library in
person and the technology that was present that you
may have taken for granted. Did you walk through an
alarm system that would go off if someone stole a book?
Did the circulation desk have barcode scanners? Does
the library have a self-checkout machine? How many
other patrons were there using the computers for

5. https://www.sciencedirect.com/sdfe/pdf/download/
eid/1-s2.0-S0099133318301848/first-page-pdf

Introduction | 9

something other than looking up books in a catalog?
Were other patrons charging their phones? What
technology education opportunities did the library
provide? What services and events would be impossible
if the electricity went out because of an emergency?

Section 2: The Open Source Movement

Section Summary

In this section, the core aspects of what open source software is and
why it exists will be discussed.

Open vs Free

Before talking about the movement it is important to understand
the difference between the words “open” and “free”. They are not
interchangeable when it comes to software. Open means that
people are allowed to see the source code and edit it, but it doesn’t
necessarily mean that the software is free. A good example of this
is the operating system Linux. While the software is open, and you
can get a version of it for free, some companies have developed
their own versions of the software that you have to pay to get.
Free software, on the other hand, might be available at no cost but
the code isn’t open so it can’t be edited and re-used. Some people
talk about free software and what they mean is software that is

10 | Introduction

both open and free from cost to use. When software is not free
from costs, and it is not open, it is called proprietary software.
Companies are usually disinclined to allow other people to see their
source code, let alone edit it.

Some people feel that software should be free speech and they
feel locking it down or making it proprietary is ethically wrong.
Those people belong to the Free Software Movement which started
in the early ’80s. The free here stands for both free from costs and
open to be edited and remixed. The Open Source Movement was
a branch of the Free Software Movement and consisted of people
who believed that proprietary software was fine but still wanted to
advocate for open options.

The Open Source Movement is about creating software that
allows anyone to edit, remix, or reuse all or part of the software.
The movement has more to do with licensing, permissions, and
organization of development than it does the actual programming.
In much the same way as Creative Commons’ licensing allows
creators and authors to expand on copyright to allow for different
uses, the Open Source Movement has recommended licensing for
software projects to allow people the legal permissions to edit
software 6. The licenses used are typically the GNU General Public
License (GNU GPL), but there are other free software licenses out
there 7. The foundation of the license is that the software is free
to be used for any purpose, to be changed for your needs, the
freedom to be shared, and the freedom to share your changes.
Software created with Open Source or free licensing is known as
Open Source Software (OSS).

A lot of the benefits that libraries found for shared cataloging can
also be found in OSS. A few developers can create software that
the whole community can use, and if someone wants a new feature

6. https://www.gnu.org/licenses/licenses.html
7. https://www.gnu.org/licenses/licenses.html

Introduction | 11

they can program it and release it back to the community. Just
like how OCLC came about to organize all this shared cataloging,
organizations developed to organize shared OSS programming
projects. GitHub is a very popular software organization platform
that provides some features for free and some for a fee. GitHub
is based on and uses the Git standard which is used for version
control of source code. Git itself is a OSS. Because OSS software
is open, it can usually be run for low cost or free, but this is not
always the case. The openness of OSS software projects also means
that there is potential for a diverse developer community which
means many different developers can look at the same code and see
different ways to fix problems. It also means there’s the opportunity
to be more flexible than other software because anyone can submit
changes.

Wikipedia: An Example

The Open Source Movement, and the communities within in, are
developing and figuring out how better to run projects and maintain
documentation. A great example is Wikipedia. Wikipedia is an
online encyclopedia that launched in 2001, and is run off of the
software Mediawiki 8 which is an OSS, which means it was
developed and is currently maintained by developers from around
the world and from many different backgrounds. This has resulted
in a well maintained and secure software that is used for projects
even outside of Wikipedia. Mediawiki is a good example of how
OSS can work well within an open-source distributed development
environment. Some librarians have taken up Wikipedia as a tool to
help people find reliable and open information and have created

8. https://www.mediawiki.org/wiki/MediaWiki

12 | Introduction

library programming to help librarians understand how to use it 9.
Librarians do this because patrons often go to Wikipedia first when
formulating their search strategy when they are looking up terms to
use in a library system search 10. This is an example of how an OSS
outside of libraries can affect librarians and library patron search
behavior.

Reflection Exercise

Have you used Wikipedia in the last week? Were you
aware that it was an open-source software project
developed by both paid and volunteer developers? Do
you have an android phone? Have you ever used the
Firefox internet browser? Have you ever had a
WordPress website or blog? The internet itself is based
on open-source software like Apache, MySQL, PHP, and
JAVA. These are all examples of open source software
that you might have used without really thinking about
where the software came from or whether you could
access and edit the source code.

Section 3: Open Source Technology in

9. https://meta.wikimedia.org/wiki/
The_Wikipedia_Library/1Lib1Ref

10. http://www.washington.edu/news/2010/03/18/uw-
study-finds-wikipedia-first-stop-for-many-student-
researchers/

Introduction | 13

Libraries

Section Summary

This section is an overview of open source technology in libraries
and the potential benefits it has for librarians.

Open Source Technology in Libraries

“The principles and practices of open source software are very
similar to the principles and practices of modern librarianship. Both
value-free and equal access to data, information, and knowledge.
Both value the peer review process. Both advocate open standards.
Both strive to promote human [understanding] and to make our
lives better. Both make efforts to improve society as a whole
assuming the sum is greater than the parts.”

– Eric Lease Morgan 11

There is an abundance of open-source software for use in
libraries. This ranges from common technology that everyone
shares, to specific library technology developed for a specific
purpose.

Libraries are moving towards open-source software for a variety
of reasons 12. Some libraries see open-source software to control
the “speed and direction of their library migrations”, or to have
modern functionalities in systems that were more recently created
with newer technologies in mind. Some libraries have moved to

11. http://infomotions.com/musings/biblioacid/
12. https://timreview.ca/article/177

14 | Introduction

open source software so that they could own and maintain the data
of their systems. In proprietary systems, this data is sometimes
owned by the company. Some libraries move to OSS because it is
more flexible and changeable for their local developers to make it
work the way they want. Other libraries have moved to OSS because
of how closely OSS matches with the library profession in general
like in the quote at the beginning of this section.

Other libraries specifically avoid OSS because they are concerned
about legal issues or having no control about the external
development of the software. Maybe they worry it’s not as safe
as proprietary software 13. Or perhaps they are dubious of the
idea that the software might be cheaper than proprietary software.
Others avoid it because OSS software often doesn’t have the
professional look that proprietary software have, and that patrons
are expecting. Other libraries don’t like the do-it-yourself nature of
OSS, and prefer to have a company to call for problems and feature
requests.

There are levels of technology, as well as levels of technology
adoption and there are benefits for librarians at all levels. The
adoption of an open-source Integrated Library System (ILS) is a
massive undertaking that may not fit all institutions. More
approachable is the idea of providing open-source software to
patrons on the computers they use. Even more approachable is
the single librarian toying around with open source software to get
experience and try new things without ever having to bring the
software to the public or request software to be purchased.

Within the realm of public-facing software, there are also levels of
involvement. A library can use open source software that functions
in almost every way like proprietary software by hiring a company

13. https://timreview.ca/article/177

Introduction | 15

to run and maintain the software for them. Or, libraries can join
consortium that run OSS as a part of the member benefits, so that
the group gets the benefits of the software and the benefits of the
built-in community support. On the other end of the spectrum,
the library can hire staff to maintain the software and the servers
in-house. The aspects that go into this choice will be discussed in
Chapter 3: Moving to Open Source Software.

The Dilemma of Collective Action and the 2.5% Proposal

In February of 2017 John Wenzler wrote about the dilemma of
collective action which is that for libraries to reap the benefits
and savings of new technologies, it requires a level of coordination
that is impossible no matter how obvious the benefits are 14. It is
difficult for libraries to argue that money or time should be diverted
away from local needs, which hinders their abilities to work toward
collective action. OSS, however, is an example of how the “dilemma
of collective action” can be overcome, at least in specific
circumstances. In a perfect world, libraries that could develop
would group together to develop the perfect library software that
other libraries would use. They would all choose one project and
put all their efforts on it, make it work for the whole community,
and make it as cheap and easy to run as possible. To support this,
David Lewis wrote a response that suggests every academic library
put 2.5% of their budget toward the development of open-source
software to create a common infrastructure 15. It remains to be seen
if this approach is the best solution for libraries, but it does show
that open source software still holds some potential to be a conduit
for change in the library world.

14. https://crl.acrl.org/index.php/crl/article/view/16581
15. http://hdl.handle.net/1805/14063

16 | Introduction

Why Librarians Should play with Open Source Software

With most technologies librarians interact with, especially software,
it can be like a black box. You provide some input or a command,
and something happens inside the box and a result comes out.
OSS, on the other hand, can be pulled apart and examined. Looked
at through a microscope and studied. The algorithms at play can
be inspected for bias, or you can simply try it out without having
to contact an IT person. For library science students, open-source
software provides a playground for getting experience in parts of
systems that are normally locked away such as the back end of
library systems.

Even if you never program a single line of code, knowing how a
system works and how the development of OSS works, can better
prepare you for writing documentation, coordinating with IT staff,
and maybe running other kinds of projects.

When you look at a problem in your daily work, and you realize
you might have a need for software, just knowing that there is free
and open software you can dip into is an incredible boon. The
library employee that can look at a problem and quickly download
and run software to solve it is a valuable employee that can fill in
technological gaps in a library workforce. When you see a metadata
problem, you see a data problem, and you can pull out tools like
OpenRefine (an open-source desktop application for data cleanup
and transformation). You have a patron with a need to convert an
audio file, but your library doesn’t have the software. You know you
can go get Audacity (which is a OSS platform for audio manipulation
and editing). Maybe someone wants to have a knowledge base for
their work, and you know how to run and maintain Mediawiki.
Maybe your team wants to create a mind map but there’s no budget
for software, you can get Freemind installed on everyone’s
computer without a single penny. Maybe you have been put in
charge of a large project for the first time, and you find GanttPV (an
open-source project management tool). Maybe you need to create

Introduction | 17

a website from scratch, and you know to look for Drupal (an open-
source website management software). The examples could go on,
but in general, if you find a piece of software you need you can
usually find OSS versions to play with.

Build a Tool Box of Open Source Software

In my entire career, I’ve found multiple times where I
was able to dip into OSS to complete a task quickly
where another employee would have had to do it by
hand. I once had to re-name hundreds of files, and I was
able to download Ant Renamer and do the work in a few
minutes instead of weeks. Other times I’ve had to edit
metadata and I’ve used OpenRefine to do what MS Excel
couldn’t. I’ve used MediaWiki, and open-source server
software to run projects and prototype ideas without
having to spend a dime.

If anything, for me, OSS brings a certain freedom to
experiment without having to worry about cost. If it’s a
software I can download to a computer, I can play with
it.

I think it’s important for every modern librarian to
develop a toolbox of OSS that they are familiar with that
they can bring to various library problems.

This book will introduce you to various OSS projects, explain how
to manage the adoption of OSS in libraries, and talk about further
contributing to the OSS community, and how to develop your own
developer skills.

18 | Introduction

Reflection Exercise

Of the examples of OSS projects listed, did any of
them pique your interest? Dive further by looking into
the software that you thought was most interesting and
look at the features available. Does knowing that these
software projects support the open exchange of ideas
make you feel differently about them? Do you think
libraries should be using at least some OSS? What do
you think are the barriers to libraries using OSS besides
the ones listed in this section?

Review Focus Questions

1. As you read the following chapter, think about what
technology you have taken for granted.

Did you find yourself thinking more about the technology
you use day to day while reading this chapter? Has any of
the knowledge changed the way you feel about the software
on your computer, your phone, or on the computers at your
local library?

2. In what ways does the Open Source movement and library
science goals match? In what ways do they resemble each
other?

Introduction | 19

The quote at the beginning of section 3 does a great job
of summarizing how OSS and libraries share common goals.
Are there any other ways that they are similar? Do you think
there are ways that each community could support the
other?

3. How successful has open-source software been for libraries?
In what ways does it succeed and in what ways does it still
need to develop?

This will be discussed more in the next chapter, so if you
don’t have a clear view of this yet that is ok. Maybe you
understand that some OSS software is difficult to implement
while others are easy. This question is one we will return to
at the end of chapter 2.

Chapter Summary

In this chapter, we went through a short review of the history
of technology in libraries so that we could gain context of how
open-source software may fit in. It then discussed the Open Source
Software Movement and the reasons and motivations for the
movement to have started. It then talked about how Open Source
Software has potential for libraries and librarians.

20 | Introduction

2. Software

Learning Objectives

• To be familiar with different kinds of software and
the purposes behind them

• To understand how OSS has affected these kinds of
software

• To have a basis for building a functional OSS
toolbox to use

Introduction

In development, there is a thing called a “full stack developer”. In
theory, this is someone who understands and can work in the
various levels of technology that build up our current software
environment. There is some argument that the “full stack developer’
is a myth because the software environment has gotten too complex
to understand fully. There are so many different software languages
to learn, and various software to link together.

The goal of this chapter is to help students understand the levels
of technology and why they are there. Readers will develop a
conversational understanding of the “stack” of software. If you’re
talking to a patron and they have a problem with the website, you
may pick up on the fact that the problem is their browser. When
someone is talking about a new technology, and they start going

Software | 21

into details, you’ll get at least an idea of what they’re talking about
or what level of the stack of software they are discussing. Even if
you are never a part of a software development project, you may
at some point find yourself troubleshooting a piece of software and
the knowledge of the different levels of technology that might be
going awry may help you in at least identifying the problem to tell
your IT support. Or, you are accidentally the IT support for the day
and you must fix the problem yourself. If you get into a job and
see a technology opportunity, such as a maker space or a position
of an integrated systems librarian, you’ll be better prepared to take
advantage.

The content of this chapter will help you develop that top-level
understanding of the technologies. The learning activities at the
end will guide you toward getting the first taste of hands on
experience with the different levels.

Figure 1 shows the levels of technologies discussed in this chapter
as a pyramid because they build on each other. The first section will
talk about the foundation of the pyramid, and the last section will
talk about the top.

Levels of technology

22 | Software

Figure 1 Levels of Technology

Focus Questions

1. How familiar are you with the software you
interact with on a day to day basis? As you read
through the chapter, think about the levels of
software that build up to make even a simple
application run.

2. What kind of software do you feel most
comfortable with? Which kind feels the most
confusing to you?

3. What comfortable steps could you take to make
the software you are least comfortable with more
familiar to you?

Section 1: Bottom of the Stack

Section Summary

The bottom of the stack is the stuff that literally must be in place
for any of the rest of it to work. This section review hardware,
operating systems and programming languages.

Software | 23

Hardware

All software is run on some form of hardware. The hardware is the
individual components of a computer. Hardware is called that to
distinguish it from software, which are the programs that run on a
computer.

The hardware of a computer usually has the same components
that do jobs. There is the case, which gives the components
something to attach to. The brains of the computer (Motherboard
and CPU), the power supply, the memory (RAM), and then
additional attachments that do various tasks like the monitor that
let you see a graphical representation of the computer’s output.
Computers can be built from individual pieces purchased separately
or purchased as pre-made systems. They can be smaller or larger,
but the point is they usually have all these parts in one form or
another.

In the same way that software can be open, the designs for
hardware can be open as well. Open Source Hardware is an example
of how a design can be open with the licensing that allows all kinds
of editing and reuse, but the item itself still costs money to build or
have. Open Source Hardware is built on the same founding concepts
of open source hardware that the design is licensed so that the
design can be studied, modified, and distributed 1.

In addition to being open, the design must be accessible. Most
open-source hardware designs seek to use non-specialized
equipment, easily attainable parts, and instructions that are easy to
follow. The point here is that for designs to be truly open source,
they can’t just be available. They must be functional for most

1. https://opensource.com/resources/what-open-
hardware

24 | Software

people. There are open-source designs for bikes 2, open-source 3D
printing equipment 3, and full open-source computers.

More popular than full computers are individual open-source
hardware parts. The most popular and well known is the Arduino.
The Arduino is a platform of both circuit board and software 4 that is
a favorite of home hobbyists. Arduinos can be used to create things
like garage door openers, talking clocks, thermostats, pollutant
sensors, and a wide range of other projects 5.

The openness of the Arduino design means that multiple
companies can make and sell Arduino devices and so there are lots
of different versions. Consumers get the benefit of this competition
by having lots of options for various projects, and a continuously
developed hardware.

It might be impractical to use open-source computers in a library
setting, but library makerspaces can make use of Arduinos and open
source 3D printing equipment and designs. Libraries can provide
workshops and materials to not only show people how Arduinos can
be used, but also talk about the concept of open-licensed hardware
and software. This is just one way for libraries, with their focus on
openness and freedom of information, to use their makerspaces to
support open-source hardware development and community.

2. http://www.xyzcargo.com/
3. http://www.appropedia.org/Open-source_3D-

printable_optics_equipment
4. https://learn.sparkfun.com/tutorials/what-is-an-

arduino
5. https://readwrite.com/2014/03/29/10-arduino-

projects-microcontroller-electrical-engineering/

Software | 25

Operating System

Operating System (OS)

The shortened form of “Operating System” is often
referred to as OS.

Because we are referring to Open Source Software as
OSS, we’re not complicating things by adding OS as a
shortening for Operating System. Just realize if you are
in a situation and someone throws out the following
phrase “UNIX is basically a simple OS, but you have to
be a genius to understand the simplicity”, you will
understand they are talking about an operating system.

By the way, that quote is from Dennis Ritchie, the guy
who created one of the most influential programming
languages of our time. He also co-created the operating
system mentioned in the quote.

The Operating System is the foundation of how software is run.
It is the thing that connects the physical computer (Hardware) and
the program (Software) so that they work together. The operating
system is a bit like the brainstem of the computer. In the same way
that your brainstem controls the beating of your heart and the rate
of your breathing, the Operating Systems control simple procedures
like taking input from the keyboard or managing how data is treated.

A handful of operating systems dominate the computer
landscape. Windows is the most popular operating system for

26 | Software

desktop and laptop computers with 82.45% of the market6.
Mackintosh (or Macs) are the next in line with 12.64% of the market.
The most popular OSS Operating System is Linux, but it only holds
1.7% of devices worldwide. It is important to note the difference in
scale here. Even though the number of devices that run Linux are
low, it remains an influential operating system.

When we talk about Linux, we’re not talking about specific software.
Instead, we are talking about something called a kernel. The kernel
is the core of the system and how it works, but it’s more like a
framework that other functionality can be built on. Lots of operating
systems use the same kernel, and if that software is using the Linux
kernel it’s considered a Linux operating system, but it may have
a different name. Red Hat Linux, Fedora, Mandrake Linux, Oracle
Linux, and Ubuntu are all different Linux operating systems. With a
proprietary Operating System like Windows, you only get the flavors
of the software that the company wants you to have (Windows 7,
Windows 10, Windows XP), but with OSS operating systems, there
can be hundreds of different flavors for different purposes and
people. Some Linux systems are better for desktop computers, and
others are designed to be stable server software (more about that
in Section 2).

There are free versions of Linux, but there are also pay for
versions since the license allows for it to be used in both non-
commercial and commercial distributions.

In addition to the different flavors of Linux operating system,
there are different distributions of the software. The Linux
operating system is kind of useless by itself. It needs other software

6. http://gs.statcounter.com/windows-version-market-
share/desktop/
worldwide/#monthly-201806-201806-map

Software | 27

to make it more useful for the common user 7. Some common things
to be included in a distribution, in addition to the Linux Kernel, are
things like a desktop environment, an installer, an email client, web
browser, or video and audio players.

For libraries, it is important to note that Linux environments are
completely different than Windows environments and most IT
people are familiar with Windows, but it takes special knowledge to
be familiar with Linux. OSS often runs on Linux operating systems,
so if your library wants to run OSS software it will need to find
or develop Linux operating system experts. You can, through self-
study and experimentation, become that expert, but it will take time
and dedication. The learning activities at the end of the chapter will
help you get started down that path.

Linux, despite its steep learning curve, still has some substantial
benefits. Because it’s not as popular as Windows, it is rarely targeted
by malware. The kernel was also designed to be stable, so it’s less
likely to crash. Some people really enjoy running Linux on their
personal computers and are willing to deal with the learning curve
to get away from “control-freakish environments that Apple and
Microsoft have increasingly foisted on users of personal computers”
8.

Programming Languages

Software can’t exist without someone sitting down, designing it,
and typing out the code to make the software work. Instead of

7. https://www.lifewire.com/basic-guide-linux-operating-
system-2202786

8. https://www.wired.com/2016/01/i-moved-to-linux-
and-its-even-better-than-i-expected/

28 | Software

having to learn machine code, programmers use a language that is
easier for our brains to understand and that usually follows human
logic patterns. These languages are generally referred to as
programming languages.

Every other category in this chapter is usually dominated by
proprietary software, but the programming language arena is
dominated by open source software languages9. The reasons behind
this have a lot to do with the value of OSS in general. Proprietary
languages cost money and they’re limited (but they can be useful in
some circumstances). OSS programming languages change as needs
change. Their openness makes them more accessible, especially for
those trying to get experience in programming without having to
spend money.

Not all programming languages are created equal. Since
programming languages are created for different tasks and different
people, they have different strengths. Languages are based on
different kinds of programming logic, like object-oriented
programming 10, functional programming, and procedural
programming. It is not important now to understand the difference
between these, but it is important to understand that different
languages are designed to function in fundamentally different ways.
Some languages are flexible enough to be used with multiple kinds
of logic, and some require very rigid adherence to one or the other.

To illustrate this point, we will review two open-source
programming languages in depth.

9. https://www.wired.com/2015/08/github-data-shows-
changing-software-landscape/

10. https://searchmicroservices.techtarget.com/definition/
object-oriented-programming-OOP

Software | 29

Machine Code

01101101 01100001 01100011 01101000 01101001 01101110
01100101 00100000 01100011 01101111 01100100 01100101

That list of zeros and ones is the words “machine
code” written out in binary.

6d 61 63 68 69 6e 65 20 63 6f 64 65

That set of letters and numbers is the same words
written in hexadecimal (hex).

These languages are programming languages that talk
the language of computers and not people. The
computer can take this input and respond directly to it.

Very few people can program in binary or hex because
it is so far removed from the language and logic our
brain uses.

Instead, most people use a programing language to
write out statements in a logical format that we can
understand, and then they compile it into machine code
using another program.

Java

Java is the most popular programming language for OSS 11. It can be
considered to be a general-purpose language that is designed to run

11. https://www.wired.com/2015/08/github-data-shows-
changing-software-landscape/

30 | Software

on any operating system and on any computer architecture (a term
that is related to the computer hardware). Java started it’s life as
a proprietary programming language but was released under Open
Source licensing. Java was created with very specific programming
goals in mind 12. It needed to be simple, and use object-oriented
programming logic, so that people could use it quickly without
in-depth programming or development knowledge. The object-
oriented focus meant that programmers could focus in on creating
bundles of code that did specific jobs, and then call on that code
when needed instead of having to re-create it. A programmer can,
for example, create a function to create a random number (or use
one already out there), and instead of having to re-type the code,
they can just reference the random number function. In coding, this
function would be considered an object, which is where the object-
oriented part of the name comes from.

Because of Java’s popularity with OSS projects, and it’s platform-
independence, and it’s low-level programming nature, it’s a
language that packs a lot of potential for the investment of time
into it 13. It is not the easiest language to learn, so if you choose to
investigate it take it slow. If it doesn’t work out, try out the next one.

Python

The Python programming language is another general-purpose
programming language whose design was built around the idea of
making it easy to read. This also means that it’s easier to maintain
because multiple programmers can look at the code and understand

12. https://www.oracle.com/technetwork/java/
intro-141325.html

13. https://simpleprogrammer.com/best-way-learn-java/

Software | 31

it easily 14. This is not always true of programming languages, and
some (like PERL) are notoriously hard to read and understand even
if you know the language. It is flexible enough to work in all the
programming logics mentioned at the beginning of this section (so
it can do Object-Oriented programming and the others).

Python is an organized logical and powerful language that has a
lot of potential depth. It’s clear readable syntax, quick progression,
versatility, available open resources, and supportive community
make it a great first language that can teach you a lot of things about
programming15. It’s also popular as an OSS programming language.

Libraries and Programming Languages

Even if you never end up writing a program that other people use,
there are several good reasons to at least be casually familiar with
programming languages. As patron needs change so do software
requirements, so often libraries hire developers either full time or
temporarily to do that development work. It helps to be able to
understand what is possible and what is not possible in
programming and to be able to speak some of their terminologies.
A librarian with a little bit of programming knowledge but a lot of
library domain knowledge working with a developer can make big
waves in librarianship. A good example of this is Occam’s Reader,

14. https://www.wefearchange.org/2010/06/import-this-
and-zen-of-python.html

15. https://mikkegoes.com/5-reasons-why-python-is-a-
great-first-programming-language/

32 | Software

a project created by an Interlibrary Loan Librarian and a Software
Developer to lend eBooks across libraries 16.

On a more personal level, knowing just a little bit of programming
can help you do small scripting tasks. Let’s say you end up needing
to convert thousands of images into PDF and you don’t have the
proprietary software to do it but you do know a little Python. You
can borrow some code, understand it, and use it without having to
create a whole piece of software to do the job 17. There are many
small tasks in libraries that people run into day to day that could
benefit from some quick scripting. Examples include dealing with
files and converting data. There are even cookbooks for different
programming languages that allow you to borrow code to do
specific tasks, so you don’t have to create everything from scratch.

Just remember, you don’t have to be a software developer to
understand code and to use it. You don’t have to create software to
use scripting to do a quick task.

Reflection Exercise

Think back on the focus questions at the beginning of
this chapter. Of the software that you felt least
comfortable with, how much of it was at the bottom of
the stack of software? Because this is the foundational
stuff, most people move through life not having to work
with it, so they don’t have a reason to know it even

16. http://publiclibrariesonline.org/2016/05/occams-
reader-interlibrary-e-book-loans/

17. https://stackoverflow.com/questions/27327513/create-
pdf-from-a-list-of-images

Software | 33

exists. Before reading section one, did you feel that this
is true of you? Did your opinion change or stay the
same after reading section one?

Section 2: Middle of the Stack

Section Summary

More people are comfortable with the middle of the stack software.
This is stuff like word editing documents, email managers, and
music software. However, most people are less familiar with server-
level software even though it’s in the middle of the stack.

Computer Software

This is the area of OSS that most people feel most comfortable with.
It’s easy enough to download a piece of OSS software and mess
around with it without having to worry about operating systems and
programming languages. Most computer level OSS is compiled to
run independently. You may have even already dabbled in computer
level OSS without realizing it.

It is possible to have a full software suite of nothing but OSS. The
only exception is open source Antivirus software. Any open-source
antivirus software should be used with caution. In Table 1, common
desktop application tasks are listed with popular OSS versions of the

34 | Software

software. In many cases, there are more options than those listed,
but this list is provided as a starting point.

Software | 35

Task OSS Notes

Office
software

LibreOffice

Apache Open
Office

Word editing,
spreadsheets,
presentation
software.

Photo and
Image
Editing
Software

GIMP

Replaces
software like
Photoshop.
Used to edit
images and
photos or
create
graphics.

Audio
editing
software 18

Audacity

Linux
Multimedia
Studio

Playback
audio files
edit various
elements of
the audio
(change pitch
etc). Save
audio in
different
formats.

Desktop
Publishing
19

Scribus

LaTex

Creating
things like
documents,
calendars,
various
printouts.
The Office
software may
also have
desktop
publishing
software as
part of it.

Computer
Design
Software
(CAD) 20

Blender 3D Creating 3D
designs.

Web
Browsers 21

Firefox

Chromium
(Chrome)

Browsing the
internet.

18. https://beebom.com/best-audio-editing-software/

36 | Software

19. https://pagination.com/desktop-publishing-software/
20. https://blog.g2crowd.com/blog/cad/

10-open-source-free-cad-tools-download/
21. https://www.makeuseof.com/tag/

best-open-source-browsers/

Software | 37

Email
Clients 22

Opera Mail

Mozella
Thunderbird

Used for
checking
email,
sending
email, and
searching
and storing
email.

Mind
Mapping
Software 23

Freemind

Mind
mapping
software is
often used to
organize
thoughts or
work.

Project
Management
Software 24

GanttPV

MyCollab-
Requires
Javaruntime,
MySQL stack

OrangeScr
um

Odoo
]project-

open[– Core
is open
source, but
modules are
not.

LibrePlan
ProjectLibr

e

Keep track of
projects,
tasks, time
frames, and
costs.

Online
Cloud
storage or
file sharing
25

ownCloud

NextCloud
Seafile
OnionShar

e
Pydio Cells

A new
category of
OSS, because
it’s a new
technology in
general. The
purpose of
this kind of
software is to
give you
“cloud
storage” of
your files,
and ability to
share them.

38 | Software

AntiVirus

ClamAV

Armadito
AntiVirus

Moon
Secure AV

Most of the
Open Source
AntiVirus
software
should be
used with
caution.

OSS desktop software does have its problems. Often, the software
does not work the way you have learned these kinds of software
work because it was created independently of the software you have
experience with, so expect a learning curve. Not all OSS is well
documented. Some software might be fine for your purposes, but if
you have a problem you might have difficulty in finding a solution.
OSS software is not always pretty. It may function, but it may not
look as polished as proprietary software.

In general, start slow and try OpenOffice 26. It’s a great
introduction to what OSS desktop applications can be like, and you
likely have experience with other word editing and spreadsheet
applications to compare it to.

22. https://www.techradar.com/news/
the-best-free-email-client

23. https://business.tutsplus.com/articles/
best-mind-mapping-software-tools--cms-29581

24. https://opensource.com/business/16/3/
top-project-management-tools-2016

25. https://opensource.com/alternatives/dropbox
26. http://www.techsoupforlibraries.org/planning-for-

success/innovation/free-and-open-source-software-
in-libraries

Software | 39

Server Level Software

The internet is a series of connected wires, but those wires
communicate and talk to each other because of server software. The
internet will be dealt with in the next section. For now, lets focus
on what a server is and why you should care about OSS server-level
software.

What is a server?

A server is just a computer that is designed to serve data to another
computer (hence the name). The computer has special software
that allows it to talk to other computers using protocols. Any
computer can be turned into a server by installing server software
on it, but whatever content you make available will only be available
if that computer is turned on. Computers that act as servers for
websites (like Amazon, or Google) must be designed to run
constantly and be resistant to problems.

Overall, servers are designed to be computers that communicate.
The computer you’re working on, if it has a web client, sends out a
request to talk to the server that has the information it wants. The
other server gets the request and, just like us, has to decide what to
do with the request.

Most of the time, the request is responded to by the server sending
out the contents of the website you asked for, but there’s a lot of
different ways the information can be handled. You can have a web
server that delivers web pages. You can have an email server that
sends and receive email messages that you then can read on your
email client. You can have servers that move files (FTP servers),

40 | Software

and servers that manage people and their authorizations (Identity
servers)27.

In order for a website to be visited by a user, they first have
to go to their web browser. They use the web browser to ask for
a webpage using a Uniform Resource Locator (URL), which is an
address that tells the browser which server to contact. The browser
passes the request to the server. The server responds by sending
the contents of the web page to the computer. The browser then
interprets the data and displays it. This is why some websites look
different using different browsers.

What about open-source servers?

OSS Server software can be downloaded in a bundle to quickly
get a server up and running. The bundle is often called XAMP (or
something similar). The different letters refer to different software
included in the bundle. The first letter is the indicator of what
operating system the bundle is designed to work with. W stands for
windows. L stands for Linux, and X means it will work with a variety
of operating systems.

The M stands for MariaDB. The DB stands for Database, and
specifically what is called a relational database. A relational
database allows some structure to the information. The information
can have a relation with other information in the database. MariaDB
allows information on the server to be structured and queried.The
A stands for Apache, which is a Hypertext Transfer Protocol Server
(HTTP). You may recognize the HTTP from the begging of websites.
Think of HTTP as the language of the internet. It’s the written

27. https://www.lifewire.com/servers-in-computer-
networking-817380

Software | 41

language that computers and servers use to communicate back and
forth. Apache runs the communication on the server end. A web
client runs the communication on the computer’s end.

The P stands for Hypertext Preprocessor (PHP). PHP is a server-
side programming language. The P can also stand for Python, or Perl
which are also OSS programming languages. If there are two P’s,
then there will be two programming languages installed.

At the end of this chapter, during the learning exercise, you will
get an opportunity to experiment with a XAMPP (Operating System
vestal, Apache, MariaDB, PHP, Perl) server on a flash drive. Even
though it will be on a flash drive, it will run just like a XAMPP server
would run in the real world.

The M in XAMPP use to stand for MySQL, but that was
acquired by a company, which made the OSS community
wary of using it. MariaDB is a fork or branch off of
MySQL. More about forks for software in later chapters
28.

Open Source Identity management: Shibboleth

There are thousands of OSS designed to run on a server in the
XAMP environment. To highlight one relevant to libraries, we want
to bring your attention to Shibboleth. Shibboleth is an identity

28. https://www.computerworld.com.au/article/457551/
dead_database_walking_mysql_creator_why_future_
belongs_mariadb/

42 | Software

management software known as a federated identify solution 29. If
you have ever had to use a user name and password, then you have
unknowingly been using identity management software. It keeps
track of people, their credentials, their rights and abilities in a
particular system. Shibboleth, in particular, is designed to be used in
lots of different places, and not just a single site. This is often called
single-sign-on. If you have ever used your Facebook or Google
account to log into an app or website, then you have used a single-
sign-on identity management system. Shibboleth has been mostly
adopted by the education and researcher communities.

Libraries have many opportunities to use an OSS like Shibboleth.
A library can set it up so that users can log into many different
databases with a single log in, or they can use it to manage their
institutional repositories and who can add content or edit.

A lot of different library services require log in, and many new
ones will as well. It’s nice when someone suggests a new service if
you have a Shibboleth instance that can just be hooked in. It makes
the patron experience easier just having to log in once.

Reflection Exercise

When you go to a website like Wikipedia, you are
actually working with all the software mentioned in this
section. Shibboleth itself isn’t used by Wikipedia, but the
software has its own built in identity management
system. Think about all the people accessing Wikipedia
right now. The English site gets 18 billion views per

29. https://www.shibboleth.net/index/

Software | 43

month 30. Imagine the server software having to keep
track of all those people coming in all at once. The
server has to hear thousands of request from user
computers and respond appropriately to get everyone
the pages they wanted. When the number of requests
gets too much, the server crashes. If this is done on
purpose, it’s called a Denial-of-Service-Attack (DoS).
Sometimes, this is accidental, like when a celebrity dies
and everyone rushes to a website to read the news.

Think back on the last website you visited. Was your
experience of these server level software seamless? Did
you have any idea that you were using a suite of
specialized software? Now that you know, do you feel
like it changes how you view websites?

Section 3: Top of the Stack

Section Summary

The top of the stack can be thought of as the front-facing part of
all the software mentioned previously. It’s the part that you see.
In this section, we will discuss the topmost layer of development,

30. http://www.pewresearch.org/fact-tank/2016/01/14/
wikipedia-at-15/

44 | Software

and how that relates to libraries. We will, specifically, talk about
library-specific software because in many cases it is designed to be
forward-facing to the patron.

Website Software

If you have a XAMP server running, you still have to design and
present a webpage in order for it to be presented to the computers
that request it. This is done through a hypertext markup language
(HTML). A markup language is a way of annotating text, images, and
other things so that a computer can treat different parts differently.

Example:
This is just regular text.
This is text annotated with HTML code that lets the computer

know to make it bold.
This is what you would see on your web browser.
This is text annotated with HTML code that lets the computer

know to make it bold.
The mechanism by which HTML works is simple, but it can be

combined into a very complex website.
However, it gets tedious and difficult to maintain when you have

lots of HTML web pages. Say you have five hundred webpages, and
you want to change the way your bold text looks. You will have to
go through each one and change each instance where you used the
bold tag.

That’s where the concept of cascading style sheets (CSS) comes
in. The idea is that you have a single document that says how each
element should be displayed. So, if you want to change all of your
bold text to bold red text, you can do it quickly by just changing the
one document.

HTML and CSS are not OSS. They are actually standards, not
software, so they can’t have a license. However, if the software lives
online, then it more than likely has an HTML or CSS layer involved.

Software | 45

Let’s say you want to do something more complicated than just
simple formatting. If you want a form that people can fill out and
send you an email, you can use JavaScript, which is an OSS
programming language specifically for use on HTML web pages.

Not everyone who works on web pages wants to learn how to be
a HTML, CSS, or JavaScript master. Instead, they want to focus in on
their content and making it available. This is why a whole category
of software was created to make creating and editing web pages as
easy as writing a word document on your computer. This is where
the content management systems (CMS) come in.

One of the most popular OSS CMS (lots of letters here), is Drupal
31. Drupal, while OSS itself, can run on both OSS server software
and proprietary server software. Drupal adds features that allow a
website to be more easily run, like user accounts that let multiple
people edit the site.

Libraries need websites to tie their online resources and their
library information together in one place, and many libraries choose
Drupal to do that. There are even some modules designed
specifically for libraries, such as Drupal OPAC, Article discovery
layers, and digital asset management systems (DAMS). Islandora is
a image repository software designed with specific digital library
software and it uses Drupal as the front-facing user interface.

Library Enterprise Software

The biggest challenge for libraries and OSS is the idea of
enterprise-level software. This is software that is designed to
handle the entirety of an enterprise. The most well known and
talked about kind of enterprise-level software is the integrated
library system (LIS). An LIS is a single monolithic piece of software

31. https://www.drupal.org/

46 | Software

that handles most of the functions of a library, like acquisitions,
cataloging, and circulation. Sometimes an LIS will handle things like
digital collections, course reserves, and interlibrary loan.

Most of the literature in libraries about OSS have to do with
moving to an OSS LIS. The two most popular are Koha and
Evergreen. These two have had the most written about them, and
the most number of libraries trying to migrate to them from various
systems. Koha is the more mature software, but it’s limited in that
it doesn’t work well for multiple libraries. Evergreen was developed
with library consortia in mind, so it handles various libraries’ sites a
lot better.

Moving to an OSS LIS can be difficult, and the choice to move
would be one that is not lightly undertaken by an organization.
The very nature of LIS means that it touches nearly every part of
the library and nearly all patrons, so changing from one system
to another affects everyone. In addition, staff will most likely have
to learn new workflows, and counterintuitive design because these
systems are, by and large, not designed by librarians. Handling the
choice of whether or not an organization will move to OSS will be
handled in Chapter 3. The argument for why librarians should be
involved in the development of OSS, and how to get started, will be
discussed in Chapter 6.

For your reference, table _ is a listing of well used OSS software
in libraries.

Software | 47

System Purpose

Koha LIS

Evergreen LIS

Backlight Discovery Tool

Extensible Catalog/XC Discovery Tool

VuFind Discovery Tool

Samvera Repository Software

Omeka and OmekaS Digital Collection Software

DSpace Repository Software

Islandora Digital Collection Software

Fedora Digital Asset Management Software

Greenstone Digital Collection Software

DataVerse Data Management Software

OpenILL Interlibrary Loan Software

FillfILLment Interlibrary Loan Software

OpenRequest Interlibrary Loan Software

Prospero Interlibrary Loan Software

In the learning activities, you will get the opportunity to play with
Koha without having to install any software, or do anything more
than go to a website. For every other system, you would have to
work somewhere to get experience with an ILS, but with OSS some
places will make example sites available for experimentation and
learning.

Reflection Exercise

For every website you visit, someone has had to work

48 | Software

to make it look the way it does. There was programming
involved in how the site functions. How comfortable did
you feel with the top of the stack technologies? Are you
curious about doing more or are you glad the
interactions between the different levels are seamless?

Chapter Summary

In this chapter, we went through a whole stack of software from the
very bottom to the top. Technologies you were probably not familiar
with, and technologies you probably use every day without realizing
it.

Links to External Resources

Open Source Hardware Association (https://www.oshwa.org/)
Arduino Tutorials (http://www.ladyada.net/learn/arduino/)
Learn Java (https://www.learnjavaonline.org/) Has tutorials and

an in browser code testing space so that you can learn and test
Java without having to download or run anything on your local
computer. The tutorials have basic programming concepts and
some advanced concepts.

Learn Python (https://www.learnpython.org/) Same group that
does the Learn Java, but without the in browser tester, so you will
have to install Python to get to test on your computer.

Software | 49

Drupal for Libraries (https://groups.drupal.org/libraries/
resources)

Self Assessment

1. Why is Python a good programming language to start with if
you want to learn to program?

2. Explain how a server interacts with a computer to get a
webpage.

3. Why would you use a Content Management System?

Exercises

One of the great things about open-source software is
that they are all very available. You can install them and get
hands-on experience with them immediately. Depending
on your level of technical expertness, the learning curve
might be smoother or steeper, but it’s all available at your
fingertips. In this section, the authors have chosen some
small projects with minimal resources to do introductory
tasks. Getting experience with these systems and software
now can help you inform your IT decisions in the future.
Based on your experiences with these tasks, is proprietary
software worth it?

You can attempt any one of these or all of them, but as
you work through the process, keep a project journal. Keep
track of what you are trying to do, links that you used,

50 | Software

notes on how successful or not you were, and track how
much time it took you for each task. Whenever you are
working on a complicated project, keeping this kind of
journal will help in re-tracing your steps, or figuring out
where things went wrong. The success criteria for these
are that you attempt them. Trying and failing is a part of
learning, so don’t shy away from something just because it
looks hard. There are different activity review points if you
fail. However, to prove you tried, you should still keep your
project journal of what you tried and how you found
information, what worked and what didn’t.

Get experience using Linux

The goal of this exercise is to install some form of Linux
and use it to get to the internet

Install Porteus, a portable distribution of Linux that can
be installed on a USB or CD (http://porteus.org/). This
distribution is not setup, for example, to host sever level
software, but to get on the internet and maybe write a
document. It’s an incredibly small distribution of Linux,
and it is suppose to boot very quickly.

One of the benefits of this is that you can use a computer
that runs Windows to set it up, and view it. The downside is
that it’s a bit of a difficult mess to try to install. Just read
what ____ said about their attempts to get it running :
http://dailylinuxuser.com/2016/09/a-not-for-everyday-
linux-user-review-of.html

If you succeed in installing Porteus and making it to the
internet, write about what you think about the interface,
and the experience. What other software did you choose
and why? What do you think of the other software
packages that come on this distribution?

Software | 51

If you are not successful in installing Porteus, write about
your experience in trying, what you tried, and how it failed.
Write about how the process can be made more user-
friendly. Would more documentation help? More detailed
instructions for how to start? What resources did you look
at to try to find answers to your solutions?

Get Started with Python

The goal in this learning activity is to learn what it takes
to start programming in an open-source programming
language. The language of choice for this activity is Python.
The task is to use Python to print “Hello, World!”. Printing a
command is one of the simplest tasks in any programming
language, and getting to “Hello, World!” on your screen can
be a journey all its own. It requires you to install the
programming language on your computer, understand how
to get to the command line, and to understand the syntax
enough to tell the computer what to do. Thankfully, there
are plenty of instructions on how to get started in Python.

Go to the Beginner’s Guide for Python and try installing it
from those instructions: https://wiki.python.org/moin/
BeginnersGuide/Download

https://www.python.org/about/gettingstarted/

To learn the syntax, you can go to
https://www.learnpython.org/en/Hello,_World!

There, there are tutorials for how to print out the
welcoming phrase in different versions of Python.

If you succeeded at getting the program to print “Hello,
World!” write about your experiences getting to that point.
Was it easy? Was it difficult? What resources did you use to

52 | Software

help you to this point? Do you think the average library
science student can get to this point?

If you failed to print the term, write about your
experience. What failed? Did you give up? Did you run out
of time? Does this experience make you have a new
appreciation for developers? What could have made this
easier? Go to Learn Java
(https://www.learnjavaonline.org/) and try to get it to Print
“Hello, World!”. It’s as simple as hitting the green “run”
button. You didn’t have to install any software and
technically completed the task. Try editing the code to
print something else. Do you think more people would
code if it were made easier?

Get experience with LibreOffice

Download and install LibreOffice. Try to use the
software instead of your normal software for a few days.
How is it different from what you normally use? Are you
impressed with it or disappointed? Are you likely to
continue using it or are you more firmly set on using your
software of choice?

There are no wrong answers. Getting experience using
open source software can be an eye opener into what is
and isn’t possible with collaborative programming.

Get Experience with Server Level Software

Install Mediawiki using Wiki on a Stick :
https://www.mediawiki.org/wiki/
Manual:Wiki_on_a_stick

This whole process is a simplified version of installing a
real server with a real Mediawiki installation. The only
difference is that you are installing it on a flash drive or

Software | 53

your computer hard drive instead of on a server. Because
it’s localized, you won’t be able to have other people use it,
but you can get the experience of setting it up and using it.
You will actually have to turn on the surver, have it boot up,
before you can edit your Mediawiki instance. Write about
the different open source software that is involved in
setting up just a simple wiki, and how difficult or easy the
process was.

Or, install Drupal on your local machine
https://www.drupal.org/docs/develop/local-server-setup
and create a simple webpage that says “Hello, world”.

If you are successful with either of these, compare your
copy to a version of the software running in the real world.
Compare your Mediawiki instance to the real Wikipedia, or
compare your Drupal to a library website using Drupal
(choose one from this list: https://groups.drupal.org/
libraries/resources). How much time do you think it takes
to get from a fresh install to a website full of content? Do
you think one person can do it alone, or should there be
multiple content creators?

If you were not successful, what do you think was your
limiting factor? Did you not have enough time? Did you not
find the resources you need when you ran into a problem?
Delve deep into how you think the community could
provide better instructions.

Get experience with library-specific software

Go to the Koha Community Demo page (https://koha-
community.org/demo/), and choose a Demo site to use for
both the OPAC and Staff Interface. In the OPAC do a search
for “War and Peace”, then do the same search in your

54 | Software

normal OPAC of choice. How do they differ? Are you
impressed or disappointed? Why?

Go to the staff side using the demo site’s log in. Look
through all the modules and play around with them. See if
you can find patron records, and see if you can check out a
book to them. If you have taken a cataloging course
recently, try to catalog a book from your private collection
into the system. For some people, this may be their first
time getting on the backend of a library system. For those
people, write about your experience and if it was harder or
easier than you imagined. For those who have experience
with other systems, how does this system compare to other
systems you have used?

Compare DSpace and Greenstone

Go to the Greenstone examples page
(http://www.greenstone.org/examples) and look through a
few of the highlighted Greenstone collections. Then, go to
the DuraSpace Use-Cases for DSpace site
(http://www.duraspace.org/dspacedirect/about/use-
cases/). Based on a review of three different sites for each
system, which system looks more modern? Now, go to the
Samvara Partners page (http://samvera.org/samvera-
partners/) and find at least one example collection to
compare to the others.

How has the user experience for digital libraries changed
from the first generation of digital asset management
software to the newest?

Get a feel for an open-source discovery platform

Go to the example pages for Blacklight (
http://projectblacklight.org/#examples) and choose one

Software | 55

of the project showcases. Compare that to the out-of-the-
box demo at https://demo.projectblacklight.org/

How much customization did different organizations put
into their OSS? How many programming hours do you think
it took to take Blacklight from the demo to one of the live
projects? If you were a library administrator seeing some
other organizations’ Blacklight interface, do you think you
would be happy with the out of the box version at your own
institution?

Can you afford open-source hardware?

Imagine you are starting a library maker space and want
to purchase some Arduinos. Do an evaluation of what
different versions of Arduino are out there, how much they
cost, and any accompanying hardware or software that you
might need to have patrons use them. What would be good
first projects to do as part of an Arduino workshop? Act like
you are writing this up as a proposal to your director or
dean to try to fund the project.

What argument can you make for why a library should be
doing this type of workshop? If you were in charge of a
library, do you think you would be convinced?

Self Assessment Answers

1. Why is Python a good programming language to start with if
you want to learn to program?

It’s clear readable syntax, quick progression, versatility,
available open resources, and supportive community make it
a great first language.

56 | Software

2. Explain how a server interacts with a computer to get a
webpage.

In order for a website to be visited by a user, they first have
to go to their web browser. They use the web browser to
ask for a webpage using a Uniform Resource Locator (URL),
which is an address that tells the browser which server to
contact. The browser passes the request to the server. The
server responds by sending the contents of the web page to
the computer.

3. Why would you use a Content Management System?

A Content Management System simplifies the creation of
websites so that users don’t have to understand the various
technologies involved in order to create web sites. A Content
Management System can make it easier to maintain a
website by making it easier to edit content, and manage
multiple people editing.

Software | 57

3. Contributing to
Open-Source Projects

Learning Objectives

• Learn how open software development projects
work

• How to contribute to open-source software if
you’re not a developer

• How to start on the path to becoming a developer
that works on open source projects

Introduction

Open-source software is about the whole community and not just
developers. In fact, open-source software is made better by
engaging a variety of people in the development process. This
chapter will help you understand how you can contribute to an
open-source project at any level of experience and expertise. For
those of you who want to take the plunge into open-source coding
and development, the end of the chapter has a guide on how to get
started.

58 | Contributing to Open-Source
Projects

Focus Questions

1. What are ways that anyone can contribute to an
open-source project, even without knowing how
to program?

2. What is a way you can engage with the open-
source community today?

3. Why are open-source projects difficult to
maintain?

Engaging with the community

Section Summary

Getting involved with open-source software can be as easy as using
the software and talking about it. This section goes over some soft
ways to participate in the community for people at all skill levels,
without having to know a single bit of code. This section borrows
from an article called How non-programmers can contribute to
open source projects by Duncan McKean from October 24, 2013.

Using Software

The first level of involvement with the open-source community is
the simple act of using the software. Find a program that is open-

Contributing to Open-Source Projects | 59

source that you like, that you can use, and start using it regularly so
you get to know it. This could be as simple as a word processor, or
something more involved like a video or audio editing program.

You should approach using open-source software differently than
using proprietary software. With proprietary software, you can
install it and use it without really knowing how it’s made or how it
is developed. You might encounter a problem and then just give up
and find another way to do what you want. However, to get the most
out of open-source software, and to give back to the community
that made it, it’s best to be an active user. This means not just using
the software, but understanding a little about how it’s made, how
to report problems, and maybe understanding the community that
makes it a little bit more.

The next step is to start becoming more familiar with the
community that maintains the software. Often, these projects have
websites that describe the project and how it’s maintained. We will
use Wikipedia as an example since most people are familiar with it.

Wikipedia is run on a piece of software called MediaWiki. You can
find it in the link at the very bottom of any Wikipedia article. The
MediaWiki project page describes the project, has instructions for
how to set up and install MediaWiki, how to edit and use MediaWiki,
and then a guide on how to develop and extend the code. They
even have helpful guides on how to start coding for a Mediawiki
project if you are new to development. The project page also has
information for if you are already a developer. The site also has news
that describes updates to the software and what was included in
that update. A good first start for getting involved in open-source
software community is to start reading these updates and
understand how software develops over time.

Join a group

Join a membership, or just a users group for a particular piece of

60 | Contributing to Open-Source Projects

software and follow the discussion. Answer questions if you can.
Post questions if you run into problems. Steering committees,
standards group, advisory groups, working groups. Sometimes, just
being at the table to discuss things is a huge help to the community.

Bug Test

As you use a piece of software, you will inevitably find problems
with it. That is actually a great thing because you can then provide
that information of the problem you encountered back to the
community so that someone can fix it.

This requires you to find the places where that software’s
community discuss bugs and problems. For the Mediawiki page,
they have a bug tracker called Phabricator. On the page for the bug
tracker, the community has guidelines for how to report software
bugs, how to report security issues, and even how to request that
a new feature be created. Have you ever sat down with a piece
of software and wished it would do something specific for you?
With open-source software, it is possible to request these of the
greater community. It might be that other people also would like
that enhancement, so you might get what you want.

Write Documentation

With proprietary software, you are almost always guaranteed to
have documentation already written when you install the software.
With open-source software, often documentation is the last step
in the process. Developers are busy writing code, and many don’t
have a passion for technical writing. A simple and effective way to
contribute to these projects is just by going over the documentation

Contributing to Open-Source Projects | 61

and making it better, making it more clear, adding parts that are
missing or writing out tutorials.

Other ways to contribute.

If you have experience or expertise in more than one language, then
you might be able to help with translating either commands in the
software to a new language or translating documentation.

If you are a librarian who does user experience (UX) work, you
could do some UX testing on the software and provide that as
feedback to the developers.

If you are a designer, you could actually help by designing the
interface to be more appealing or modern.

If all else fails, and you have the funds, you can often support
a open-source project by donating. Mediawiki, for example, is run
by the Wikimedia Foundation which has goals to support education
worldwide and fighting legal battles to make free knowledge
possible around the world.

Development for Open-Source

Section Summary

In this section, we will talk about more direct ways of contributing
to open-source software, like learning to code. This section borrows
from A developer’s guide to getting into open source by Radek
Pazdera from Feb 19, 2015

62 | Contributing to Open-Source Projects

Learning to Code

You don’t have to have a computer science degree to code. The
degree does help people understand the more complex aspects of
software development, and it gives them forced practice. However,
much like art, you don’t need a degree to be good at it and
contribute to a worthy cause.

In an ideal world, you would find a project you want to contribute
to and start down the process of learning the language it’s written
in. However, not all languages are easy to learn. The ideal first
language would be one that is relatively easy to learn, with lost of
open resources so you don’t have to spend money to learn, and
also teaches you the basics of programming. The language we
recommend is Python. Python is a very versatile language that is
designed to be structured in a way that makes the syntax easy to
learn, and easy to read. Because it’s an established open-source
programming language, there are a lot of high-quality resources out
there.

If you want to get started in Python without having to download
anything onto your computer, you can use the w3Schools’ Python
Tutorial. This will get you a good introduction to the language, some
experience coding, and all without having to download a single
thing onto your computer. However, to get the most out of it, install
Python on your computer and use the things that you learn in the
tutorials to make a simple application. Try to use everything you
learn. The application doesn’t have to make sense, it just has to
help you remember what you’ve learned. Instead of paying for the
certificate, try to start making your own portfolio of your learning.

Open book project: How to Think like a Computer Scientist:
Learning with Python 3

http://openbookproject.net/thinkcs/python/english3e/
Programming is all about learning the logic of how things work in

programming. Once you’ve got a solid foundation with Python, you
can then look into what projects you are interested in contributing

Contributing to Open-Source Projects | 63

to, and what language they are coded in, and you can find tutorials
on those languages. You’ll find a lot of the concepts are the same,
but the syntax that you use to express them are different for each
language.

Choosing a Project

One of the most important parts is choosing a project that you care
about. Preferably, it should be a piece of software that you use often
and are familiar with. Being invested in the product will help your
motivation stay high.

Learning the Code Base of a particular project

There are lots of good guides on how to get familiar with a codebase
in general including the article: How to get familiar with a new
codebase by Perikis Gkolias, published March 28, 2018. In this article
Gkolias talks about how this is a skill just as every other part of
development is a skill, which means it can be practiced and you will
get better at it over time. The first step Gkolias recommends is to
read all the documentation available. Look for documentation on
project pages, wiki pages, or in the code repository. Next is to read
any notes commented out in the code itself. If it is a large piece of
software, then try to focus on one segment of it and figure out how
that works, then move to another. Break up the code into digestible
bits that you can fully understand.

The next step is to understand the code’s dependencies by
understanding how it is built. To build a piece of software is to
create the environment it needs to run and add in all the software or
mechanisms it’s dependent on. Gkolias suggests that once you have
the software successfully running, start using it as an end-user, and

64 | Contributing to Open-Source Projects

then look at whatever logs are produced. This will give you an idea
of the order of things, or what sequences functions happen in.

Gkolias’s next suggestion is that you start understanding the
developer’s logic of the system, and start mapping out or drawing
out the logic diagrams. These are visuals that help you understand
how information flows in the system.

After you have an idea of how the system flows, then you can start
trying to solve a bug or a problem. Something small and manageable.

Start Small, form partnerships, develop a
reputation

Once you understand the codebase and are familiar with how things
work, the next step is to get into the loop with the other developers
on the project. Developers communicate in different ways in
different projects, so just try to find where and how people are
communicating about that one. Join any mailing lists available. You
don’t have to read every email that comes your way, but you’ll start
to see how things work with the community. Don’t hesitate to make
direct contact with the developers or maintainers in asking how to
get involved if the way is not immediately clear.

Make one small contribution, then make another

Read any code submission guidelines, and follow them. Follow any
naming conventions that the community has set out, and in general
make it as easy as possible for the maintainers to use your code.
Don’t get discouraged if someone reviews your code and rejects it.
This is a learning process. Use it as a learning opportunity and take
some extra time to try to understand why it was rejected, and get a
sense for what the maintainers want.

Contributing to Open-Source Projects | 65

Chapter Summary

Links to External Resources

A review of how most of open-source development is done by
vendor supported developers: https://www.infoworld.com/
article/3268001/open-source-isnt-the-community-you-think-it-
is.html

Exercises

Document Writing Sprint

One of the problems with open-source software is a lack
of documentation. One of the ways that communities try to
address this is by having documentation writing sprints
where a group of people gets together either physically or
virtually, and contribute to filling out the documentation
for the software. Sometimes this documentation is housed
in a wiki, sometimes it’s organized somewhere else. You
can use the DuraSpace DSpace Wiki to see an example of
how documentation is organized.

66 | Contributing to Open-Source Projects

This is where you can add appendices or other back matter.

Appendix | 67

	Open Source Software in Libraries
	Open Source Software in Libraries
	Contents
	Preface
	Joy Perrin

	RAIDER Publishing
	Introduction
	Software
	Contributing to Open-Source Projects

	Appendix

